Implications of Pharmacogenomics in the Current and Future Treatment of Asthma

Thomas J. Morrow, MD

ABSTRACT

BACKGROUND: For more than a generation, managed care has attempted to eliminate variation in care delivery in the hope of producing predictable outcomes. But the population-based, guideline-driven approach may not have fully appreciated the importance of individual behavior (adherence) and environment, as well as individual genetic makeup. Genetic variation in response to currently recommended therapies may require tailoring medication regimens to the individual patient to achieve optimal outcomes.

OBJECTIVE: To review the pharmacogenomics of asthma and how they impact medication regimens to the individual patient to achieve optimal outcomes.

METHODS: A search of PubMed that included the time period from January 1991 through September 2005 and the key terms: asthma pharmacogenetics, asthma genetics, asthma response variability, asthma glucocorticoid resistance, asthma steroid-unresponsive, asthma control, beta agonist genomics, beta 2-receptor abnormalities, asthma genotypes, and leukotriene inhibitor polymorphisms produced 105 articles. Forty-five were rejected for this subject review by failing the following criteria: (1) results in humans, not animals, (2) provide information about clinical implications as well as description of molecular and cellular mechanism of action or the site of action on the gene, and (3) preference for manuscripts that quantified information/results over those that just stated that there were observed differences. The remaining 60 references were reviewed, and 7 references were added after peer review.

RESULTS: There are now limited examples of gene polymorphisms that can influence responses to beta 2-agonists, glucocorticosteroids, and leukotriene modifiers in patients with asthma. Gene mutations that are known to alter the response to asthma therapy include Arg/Arg at position 16, mutations of LTC4S, ALOX15, and GR/NR3C1, increased expression of GR, CRHR1 variants, and mutations in CYP1A2 (-22964 [G/A]), and T 314 allele for histamine N-methyltransferase. Some of the effects associated with these mutations are increased/decreased response to therapy, glucocorticoid resistance, decreased theophylline clearance and possible toxicity, and increased bronchoconstriction.

CONCLUSIONS: Understanding the impact of genetic variations on response to therapy may ultimately improve treatment outcomes for patients with asthma. However, despite substantial progress, no individual gene polymorphisms have been associated with altered responses to asthma treatment in large numbers of patients. It is not yet possible to tailor medication therapy for asthma based on genetic characteristics of individual patients.

KEYWORDS: Asthma, Genetics, Polymorphisms, Treatment response, Outcomes

What is already known about this subject

- There is substantial interpatient variation in responses to different asthma therapies.
- Genetic mutations associated with altered responses to commonly used asthma therapies have been identified.

What this study adds

- Although genetic variants have been recognized that affect asthma treatment response, pharmacogenomic evaluation is still too immature to implement population-wide, individualized asthma therapy.

Clinical practice has evolved from anecdotal case reports, to collections of signs and symptoms, to evidence-based medicine. This approach has generally embraced population-based approaches to care to produce a more consistent outcome from different providers. Treatment of both acute and chronic disease is now driven by guidelines based on results from large-scale, well-controlled clinical trials. Examples of well-known guidelines include those for treatment of hypertension, dyslipidemia, diabetes, and depression. In general, treatment guidelines centralize information about phenotypic characteristics (e.g., sex, age, and body weight), patient and family history, and disease severity (e.g., blood pressure and cholesterol level) to drive treatment decisions in a standardized manner. This has led to a dramatic improvement in overall care as it has diminished the variability of individual practitioners in their application of evidence.

The sequencing of the human genome was a fundamentally important step in the evolution of medicine and a quantum leap in our understanding of genes, their association with specific diseases, and new targets of pharmacotherapy. Since the completion of the draft of the human genome in early 2001, gene-based therapies have begun to influence patient care. Advances in the management of hepatitis C, schizophrenia, leukemia, prostate cancer, lung cancer, and breast cancer have all resulted from increased understanding of the genes associated with these diseases. Understanding the manner in which a given patient's genetic inheritance may influence response to therapy has increased attention on individualization of therapy based on such information.

The highly complex respiratory system is an important pathway for the entry of disease-causing vectors, including viruses, bacteria, fungi, toxins, and antigens. Interpatient
Implications of Pharmacogenomics in the Current and Future Treatment of Asthma

variability in response to treatments for respiratory diseases, such as asthma, is very high, but efforts to understand potential genetic sources of this variability have lagged behind those for other conditions. The objective of this review is to highlight the pharmacogenomics of asthma and how they impact the medications utilized to treat this disease.

### Overview of Asthma

#### Pathophysiology

Asthma is a chronic inflammatory disease of the airways that is characterized by intermittent and at least partially reversible bronchoconstriction, as well as by airway hyper-responsiveness to a wide variety of stimuli. The inflammatory features characteristic of asthma include infiltration of the airways by inflammatory cells that release various cytokines and inflammatory mediators. These mediators result in an increase in airway edema and mucus secretion, hypertrophy and hyperplasia of airway smooth muscle, and increased airway vascularity, all of which contribute to airflow obstruction. There is wide variability in the pathophysiologic features apparent in different patients with asthma. In many patients, eosinophils are the predominant inflammatory cell type, while in others, neutrophils rather than eosinophils have been shown to be present as the dominant inflammatory cell. Variability in response to medications is also commonly seen in asthmatics. There are many potential reasons for this variability. As noted above, asthma is typically characterized by eosinophil activation and infiltration of the airways, but some patients have increased neutrophils and lack eosinophils in their airways. Such patients may have decreased responses to leukotriene response modifiers and/or inhaled corticosteroids.

#### Epidemiology

Asthma is a very common disease associated with high morbidity. Review of worldwide data indicates that the prevalence of asthma has increased substantially over the last 20 years, but the reasons for this are not clear. Results from the United States indicate that the prevalence of asthma had increased by 75% from 1980 to 1994 and asthma now affects 8% to 10% of the U.S. population. In a survey of more than 42,000 U.S. households, 30% of patients with mild to moderate disease and 70% of those with moderate to severe disease, based on symptoms, reported some level of functional impairment. In 1998, the direct and indirect costs associated with medical care of patients with asthma exceeded $11 billion ($7.5 billion and $3.8 billion, respectively).

### Asthma Diagnosis, Therapy, and Current Treatment Guidelines

#### Diagnosis

Accurate diagnosis is the critical component in the management of asthma. Generally, asthma presents episodic symptoms of airflow obstruction that are at least partially reversible and not attributable to other pathologies. Chronic obstructive pulmonary disease, vocal cord dysfunction in adults, and cystic fibrosis and aspiration in children, must be ruled out in the differential diagnosis of asthma. Spirometric studies utilizing prebronchodilator and postbronchodilator therapy measuring forced expiratory volume in 1 second (FEV₁) and peak flow are valuable in measuring reversibility and classifying disease severity. Allergens and irritants that can trigger symptoms or exacerbations should be identified and removed or exposure limited. Thus, while certain features are considered characteristic of asthma, heterogeneity exists in terms of pathologic presentation and response to therapy. It seems logical that genetic variability may explain some of this heterogeneity.

#### Pharmacotherapy

The goal of pharmacotherapy is to successfully maintain normal activity levels, including exercise; control chronic and nocturnal symptoms; optimize pulmonary function; prevent acute episodes of asthma; and avoid adverse effects of asthma medications. Medications used to treat asthma can be divided into 2 general groups: acute-relief medications (i.e., short-acting beta-agonists, and systemic glucocorticosteroids) and chronic-use medications (inhaled corticosteroids, cromolyn/nedocromil, leukotriene modifiers, long-acting beta-agonists, methylxanthines, and omalizumab).

#### Current Treatment Guidelines and Treatment Efficacy

The National Asthma Education and Prevention Program guidelines recommend a stepwise approach to pharmacologic therapy, whereby the amount and frequency of medications are dictated by the severity of the asthma and directed toward suppression of increasing airway inflammation. According to these guidelines, therapy is initiated aggressively to establish prompt control and then slowly stepped-down to minimize the risk of adverse events without sacrificing efficacy.

Achievement of treatment goals are less than optimal in many patients. For some this may be due to poor adherence to treatment guidelines, but for a small subgroup, this may be due, in part, to genetic polymorphisms as well as the fact that disease severity may be misclassified in some patients with asthma, resulting in inappropriate therapy. Even treatment that is fully consistent with current guidelines fails to control asthma in some patients. Results of a randomized, stratified, double-blind, parallel-group study of 3,421 patients with uncontrolled asthma showed that fully optimized, long-term drug therapy with inhaled corticosteroids or inhaled corticosteroids plus a long-acting beta-agonist controlled approximately 75% of this group. While these results suggest that the majority of patients could reach guideline-defined measures of control, approximately 25% of these managed patients could not achieve control as defined by the Global Initiative for Asthma and the National Institutes of Health. These results suggest that other factors,
Implications of Pharmacogenomics in the Current and Future Treatment of Asthma

such as severity of disease, concurrent illness, environmental exposures, medication noncompliance, and interpatient genetic variability in response to asthma therapy may play important roles in treatment efficacy. It is reasonable to suggest that current treatment guidelines for asthma therapy should be reviewed in light of the latest information about genetic determinants of responsivity to commonly used asthma therapies.

### Genetic Determinants of Responsivity to Asthma Therapy

Genetic factors, including polymorphism in a gene or a random DNA position (single nucleotide polymorphism [SNP]), or in a series of associated alleles, play a role in determining heterogeneous responses to pharmacological treatment among patients with asthma. Drug therapy tailored to an asthmatic patient’s genotype may result in a clinically important increase in efficacy and a reduction in adverse events.

### Specific Genetic Mutations That Alter Responses to Different Asthma Therapies

#### Beta 2-Agonists

Beta 2-agonists are important bronchodilator drugs commonly used in the treatment of asthma. The beta 2-adrenoceptor gene is expressed in bronchial smooth muscle cells and induces dilation in response to endogenous catecholamine or exogenous triggers. Several polymorphisms have been described in this gene, which is located on the chromosome 5q31-32. Three coding polymorphisms, located at positions 16, 27, and 164, have been studied.

Clinical studies have indicated that the Arg/Arg genotype for residue 16 of the beta 2-receptor alters responses to treatment and disease severity in patients with asthma. Results from one study showed that albuterol-evoked FEV<sub>1</sub> was higher and the response was more rapid in Arg16 homozygotes compared with carriers of the Gly16 variant (18% increase versus 4.9% increase, P <0.03). Similarly, spirometric assessment of 269 participants in a longitudinal study of asthma indicated that homozygotes for Arg16 were 5.3 times more likely than Gly16 homozygotes to respond (>15.3% increase in FEV<sub>1</sub>) to challenge with 180 mcg albuterol.

In contrast, clinical trial results have indicated a decreased response to longer-term beta 2-agonist treatment among patients with Arg/Arg genotype for residue 16 of the beta 2-receptor as well as increased risk of exacerbations among patients with this genotype who were treated with a short-acting beta 2-agonist.

The Beta-Adrenergic Response by Genotype trial was designed to establish a genotype-dependent effect of albuterol use on airway function. Patients with mild asthma were enrolled based on clinical criteria and their genotype (Arg/Arg or homozygous for glycine [Gly/Gly]) at the locus encoding the 16th amino acid in the beta 2-adrenoceptor.

Results showed that patients with the Arg/Arg genotype had increased peak expiratory flow rates (PEFR) when beta 2-agonists were withdrawn as a rescue inhaler and replaced with ipratropium bromide. In contrast, patients with the Gly/Gly genotype showed good responses to beta 2-agonist therapy, that reversed when it was withdrawn. During randomized treatment, patients with the Gly/Gly genotype

### Table 1

Results From Pharmacogenomic Studies That Have Provided Information Relevant to the Treatment of Asthma

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Mutation</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta 2-agonists</td>
<td>Arg/Arg at position 16</td>
<td>• Increased acute response to albuterol&lt;sup&gt;31,32&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increased risk for exacerbations&lt;sup&gt;33,34&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Decreased response to long-term treatment with short-acting beta-agonists&lt;sup&gt;38&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increased PEFR when short-acting beta-agonist withdrawn&lt;sup&gt;35,36&lt;/sup&gt;</td>
</tr>
<tr>
<td>Leukotriene response modifier</td>
<td>LTC4S mutation</td>
<td>• Decreased response to zafirlukast&lt;sup&gt;36&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Decrease in FEV&lt;sub&gt;1&lt;/sub&gt; with zafirlukast&lt;sup&gt;36&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>ALOX5 mutation</td>
<td>• Decreased response to zafirlukast&lt;sup&gt;36&lt;/sup&gt;</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>GR/NR3C1 mutations</td>
<td>• Glucocorticoid resistance&lt;sup&gt;37&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>Increased expression of GR</td>
<td>• Decreased ability of inhaled corticosteroids to decrease expression of inflammatory cytokines by pulmonary cells&lt;sup&gt;38,39&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>CRHR1 variants</td>
<td>• Increased response to inhaled corticosteroids&lt;sup&gt;40&lt;/sup&gt;</td>
</tr>
<tr>
<td>Theophylline</td>
<td>CYP1A2 (-2964 [G/A])</td>
<td>• Decreased clearance and possible toxicity&lt;sup&gt;42&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>T 314 allele for histamine N-methyl-transferase</td>
<td>• Increased bronchoconstriction&lt;sup&gt;40&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

FEV<sub>1</sub>-forced expiratory volume in 1 second; GR=glucocorticoid receptor; PEFR=peak expiratory flow rate.
had an increase in morning PEFR of 14 L/min versus placebo with regularly scheduled albuterol. Patients with the Arg/Arg genotype had lower morning PEFR (-10 L/min) during treatment with albuterol than during the placebo period, when albuterol use was limited. The genotype-attributable treatment difference was thus -24 L/min. This information indicates that chronic treatment with a short-acting beta 2-agonist should probably be avoided in asthma patients with the Arg/Arg genotype. It is estimated that 15% (16% of whites and 20% of blacks) of the population is homozygous for Arg16.

A retrospective analysis of relationships between polymorphisms at codons 16 and 27 of the beta 2-adrenoceptor and clinical outcomes in a randomized, placebo-controlled, crossover trial of regularly scheduled salbutamol and salmeterol in 115 patients with mild to moderate asthma indicated an different relationship between the LTC4 core promoter locus and FEV1. Patients with the Arg/Arg genotype had lower morning PEFR (-24 L/min). Three patients were homozygous for mutations in ALOX5 and LTC4S. These individuals were participating in an asthma trial of regularly scheduled salbutamol and salmeterol in 115 patients with mild to moderate asthma. A retrospective analysis of relationships between polymorphisms at codons 16 and 27 of the beta 2-adrenoceptor and clinical outcomes in a randomized, placebo-controlled, crossover trial of regularly scheduled salbutamol and salmeterol in 115 patients with mild to moderate asthma indicated an different relationship between the LTC4 core promoter locus and FEV1. Patients with the Arg/Arg genotype had lower morning PEFR (-24 L/min).

**Glucocorticoids**

Glucocorticoids are the most potent anti-inflammatory drugs used for asthma treatment. They act by binding to an intracellular glucocorticoid receptor (GR) to form a complex. The receptor-ligand complex translocates to the nucleus where it regulates gene expression, decreasing transcription of various proinflammatory proteins and increasing transcription of anti-inflammatory proteins. Glucocorticoids also increase transcription of beta 2-adrenoceptors and muscarinic receptors. This increase in transcription may help to shift airway regulation from vagally mediated bronchoconstriction to sympathetically mediated bronchorelaxation.

The clinical efficacy of glucocorticoid therapy is derived from a combination of anti-inflammatory effects in the lung, reduction of inflammatory cell survival, and inhibition of inflammatory cytokine production. Despite their well-known efficacy, there is a subset of asthmatic patients who are unresponsive to corticosteroids. These patients demonstrate persistent respiratory symptoms, nocturnal exacerbations, persistent airway obstruction, and inflammation, even though their treatment includes high doses of systemic glucocorticoids. Clinical studies have shown about 5% to 10% of all patients with asthma and up to 35% of those with severe disease have reduced responses to glucocorticosteroid therapy. African Americans may appear to have a racial predisposition to decreased responsiveness to glucocorticosteroid therapy, which was approximately 40% in poorly controlled patients.

It has been shown that some glucocorticoid-resistant patients have abnormalities in the activity of proinflammatory transcription factors AP-1 and NF-κB. Both AP-1 and NF-κB act by inducing the transcription of chemoattractants, cytokines, cytokine receptors, and cell adhesion molecules. Many cases of glucocorticoid resistance may be due to mutations or polymorphisms present in the glucocorticoid receptor gene (GR/NR3C1). A total of 15 missense, 3 nonsense, 3 frameshift, 1 splice site, and 2 alternative spliced mutations have been reported in the NR3C1 gene. These mutations have been associated with glucocorticoid resistance.

There are 2 naturally occurring isoforms of the NR3C1: GRα and
Implications of Pharmacogenomics in the Current and Future Treatment of Asthma

Economic Considerations for Pharmacogenomics

Economic considerations need to be considered in the application of pharmacogenomics to clinical therapy. A set of cost-effectiveness criteria has been proposed to determine when pharmacogenomics is appropriate in selection of therapy and can act as a guide for future research. These criteria include: (1) disease has a severe outcome, defined as a significant impact on the quality of life, or has expensive medical care costs, or has a high mortality; (2) a drug’s response is currently not monitored or there is difficulty in monitoring the response; (3) there is a strong association between gene variant and clinically relevant outcomes; (4) a rapid and relatively inexpensive assay is available; and (5) variant allele frequency is relatively high (Table 2). These criteria could eventually be considered in the drug selection processes utilized by managed health care plans.

The majority of managed health care plans use prior-
Implications of Pharmacogenomics in the Current and Future Treatment of Asthma

### TABLE 2  Framework for Evaluating the Potential Cost-Effectiveness of Pharmacogenic-Based Therapies

<table>
<thead>
<tr>
<th>Factors</th>
<th>Characteristics Favoring Cost-Effectiveness</th>
<th>Current Status in Asthma Disease Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity of outcome avoided</td>
<td>Severe outcomes, which include high mortality, significant impact on quality of life, or expensive health care costs</td>
<td>If identify patient as steroid insensitive, then what alternative can be used to improve quality of life?</td>
</tr>
<tr>
<td>Drug monitoring</td>
<td>Drug-response monitoring that is currently not practiced or difficult</td>
<td>Monitoring accomplished by home peak-flow logs and symptom-based asthma action plans</td>
</tr>
<tr>
<td>Genotype-phenotype association</td>
<td>Strong association between gene variant and clinically relevant outcomes</td>
<td>How clinically relevant are IL-4 and IL-5 levels?</td>
</tr>
<tr>
<td>Assay</td>
<td>Availability of a rapid and relatively inexpensive assay</td>
<td>How much are the current assays? Availability?</td>
</tr>
<tr>
<td>Polymorphism</td>
<td>Relatively high frequency of variant allele</td>
<td>See Table 1</td>
</tr>
</tbody>
</table>

An early yet growing body of evidence shows that incorporating our understanding of genomics into clinical practice can lead to clinical benefit. Genetic predictors of responses to specific therapies could be helpful in patients with asthma and clinicians should be educated regarding these determinants.53,64

At present, there has been little integration of genomics and genetic testing for determination of best approaches to therapy for patients with asthma. However, results from several studies might have “set the stage” for this approach. For example, it has been noted that the association of the CRHR1 gene, as well as 1 specific haplotype within the CRHR1 gene, with the degree of response to inhaled corticosteroids, may provide the basis for a first step in the development of individualized therapy for asthma.65

However, the applicability of genomic and genetic testing faces significant challenges. Patients are likely to be uncomfortable without the presence of confidentiality safeguards. Physicians will be faced with a bewildering array of testing from competing vendors. Managed care companies will face difficulties in tracking and managing the utilization of these complicated tests due to potentially high costs and lack of an adequate coding system for billing. They will also face difficulties in coordinating all of the contracts in a rapidly expanding field. Pharmaceutical companies will face situations in which decisions to control utilization of their products are influenced by testing that is likely to be less than 100% sensitive or 100% specific. Patients will be caught in the middle.

It is obvious that standards of care will be sorely needed to guide this process. Most importantly, it is essential that future clinical trials demonstrate that the clinical benefits achieved with therapy selected on the basis of pharmacogenetic analysis justify the cost of testing. A recent modeling study carried out by Stallings and colleagues compared the annualized per-patient cost testing all asthma patients for a nonresponse genotype prior to treating versus no testing. They estimated that the savings associated with the testing strategy ranged from $200 to $767.
per patient and concluded that testing costs would be more than offset by avoided nonresponse costs.66

Conclusions
We now have more information about the genetic underpinnings of interpatient variability in response to therapies used in patients with asthma. There are clear examples of gene polymorphisms that can influence responses to beta 2-agonists, glucocorticosteroids, and leukotriene modifiers. However, it must be remembered that despite substantial progress, no individual gene polymorphisms have been associated with altered responses to treatment in large numbers of patients, which is critical to obtain prior to fielding gene testing.67

Emerging results for a wide range of diseases, including asthma, indicate that standards of care established in treatment guidelines may not be uniformly applicable to the entire population of patients with a given disease because of multiple causes, one of which is gaining recognition: genetic variation in treatment response. In asthma, there is significant genetically determined variation in response to the 3 main modes of therapy: inhaled corticosteroids, beta 2-agonists, and leukotriene response modifiers. These genetically determined variations in response are important to keep in mind when clinicians make modifications to therapeutic regimens for asthma therapy to achieve control of symptoms and exacerbations. Understanding the impact of genetic variations on response to therapy has the potential to improve care, decrease side effects, and improve patient outcomes.

Managed care physicians and patients will soon enter a new era of complexity that will require significant education. It is important that they understand the therapeutic as well as the social and economic implications of our increased understanding of both the genetics of disease and responses to specific therapies. There are important and difficult ethical issues related to genetic testing (e.g., cost insurability, employability, medical prognosis and treatment decisions based on genetic information) that must be addressed by both health care providers and society in general.

DISCLOSURES
No outside funding supported this research. Author Thomas J. Morrow worked as an independent consultant and had a primary affiliation with Teva Neuroscience during the time that this article was prepared. After submission of this article, the author joined Genentech as a director in the Value-Based Health department.

REFERENCES

Author

THOMAS J. MORROW, MD, is director, Value-Based Health Care, Genentech, Inc., South San Francisco, California, and is immediate past president of the National Association of Managed Care Physicians.

AUTHOR CORRESPONDENCE: Thomas J. Morrow, MD, Director, Value-Based Health Care, Genentech, Inc., 320 Pilgrimage Point, Alpharetta, GA 30022. Tel: (404) 583-6028; Fax: (770) 663-0754; E-mail: thomasmorrowmd@hotmail.com


Implications of Pharmacogenomics in the Current and Future Treatment of Asthma


