Treatment of Major Depressive Disorder in Patients Failing Initial Therapy: An Excel-Based Pharmacoeconomic Model

Daniel C. Malone, PhD
John G. Tierney II, MD

Supplement
July 2007
Vol. 13, No. 6, S-a
Supplement Policy Statement

Standards for Supplements to the Journal of Managed Care Pharmacy

Supplements to the Journal of Managed Care Pharmacy are intended to support medical education and research in areas of clinical practice, health care quality improvement, or efficient administration and delivery of health benefits. The following standards are applied to all JMCP supplements to assure quality and assist readers in evaluating potential bias and determining alternate explanations for findings and results.

1. Disclose the principal sources of funding in a manner that permits easy recognition by the reader.
2. Disclose the existence of all potential conflicts of interest among supplement contributors, including financial or personal bias.
3. Describe all drugs by generic name unless the use of the brand name is necessary to reduce the opportunity for confusion among readers.
4. Strive to report subjects of current interest to managed care pharmacists and other managed care professionals.
5. Seek and publish content that does not duplicate content in the Journal of Managed Care Pharmacy.
6. Subject all supplements to expert peer review.

Daniel C. Malone, PhD, is a professor of pharmacy and public health; a director, Division of Pharmaceutical Policy; and an investigator, Center for Health Outcomes and Pharmacoeconomic Research, University of Arizona College of Pharmacy, Tucson. Malone earned his BS in pharmacy, magna cum laude, at the University of Colorado, Denver, and his MS and PhD in pharmacy administration at the University of Texas at Austin. He completed his fellowship in public health and community medicine at the University of Washington School of Public Health and Community Medicine and School of Pharmacy in Seattle.

Malone has authored or coauthored articles concerning drugs to treat gastrointestinal disease, peptic ulcer, blood pressure, and asthma, among other conditions. His articles on these and related topics are published in prestigious scientific journals such as Pharmacotherapy, Annals of Pharmacotherapy and Archives of Internal Medicine. He has conducted more than 100 local, regional, national, and international invited presentations and symposia. Malone has been principal investigator and coinvestigator for 24 research projects in his field. He is a member of the American Association of Colleges of Pharmacy, the American Pharmaceutical Association, the American Society of Health-System Pharmacists, the Academy of Managed Care Pharmacy, and the International Society of Pharmaceutical Outcomes Researchers. Malone is a recipient of 6 honors and awards, including the Professional Achievement Award presented by the University of Colorado School of Pharmacy.

John G. Tierney II, MD, is in private practice in general adult and geriatric psychiatry and has conducted numerous lectures, regionally and nationally, on psychiatric issues. He is also a clinical associate professor of psychiatry, University of Texas Health Science Center Medical School, San Antonio.

Tierney received his undergraduate degrees from the U.S. Air Force Academy, Colorado Springs, Colorado, where he was on the Superintendent, Commandant, and Dean’s honor lists, and his MA in psychology at St. Mary’s University, San Antonio, Texas. Tierney received his MD and completed his residency in psychiatry at the University of Texas Health Science Center Medical School, in San Antonio. He served his senior year as chief resident in psychiatry. He also completed additional fellowship training in consultation-liaison psychiatry at the Ochsner Institute, New Orleans, Louisiana.

Board-certified in psychiatry with added certification in geriatric psychiatry, Tierney has practiced psychiatry for almost 20 years. He has coauthored chapters on depression in the medically ill and lectures extensively, both regionally and nationally, on psychiatric treatment issues. He received the Master Clinician Award from the Neuroscience Education Institute.

Acknowledgment

Special thanks to Brook Zitek, DO, associate director, Neuroscience, Global Medical Affairs, Wyeth Pharmaceuticals, for reviewing this supplement and providing clinical insight. Zitek’s responsibilities include providing medically related product support, developing phase 4 studies, maintaining scientific advisory boards and advocacy groups, and ensuring compliance with promotional codes and regulations. She is a board-certified general/adult psychiatrist, with subspecialties in both emergency psychiatry and forensic psychiatry, with more than 10 years of experience. She was previously with Temple University School of Medicine, where she served as the medical director of the Temple Crisis Response Center, a psychiatric emergency service. As an assistant professor at Temple, Zitek supervised medical students and residents and developed several clinical research projects with her colleagues.
Table of Contents

Treatment of Major Depressive Disorder
in Patients Failing Initial Therapy:
An Excel-Based Pharmacoeconomic Model

S2 Treatment-Resistant Depression: Managed Care Considerations
John G. Tierney II, MD

S8 A Budget-Impact and Cost-Effectiveness Model for Second-Line Treatment
of Major Depression
Daniel C. Malone, PhD

This supplement was funded by a grant from Wyeth Pharmaceuticals Inc. The articles published in this supplement represent the opinions of the authors and do not reflect the official policy or views of the Academy of Managed Care Pharmacy, the authors’ institutions, or Wyeth Pharmaceuticals Inc. unless so specified. The authors have disclosed if any unlabeled use of products is mentioned in their articles. Before prescribing any medicine, clinicians should consult primary references and full prescribing information.
ABSTRACT

BACKGROUND: Treatment-resistant depression (TRD) presents a unique challenge in managed care, requiring review of both the clinical and economic components of care.

OBJECTIVE: To review the TRD disease state as well as data supporting the various therapeutic options available for the treatment of persistent depression in managed care.

SUMMARY: While there is no consensus on the definition of TRD, persistent disease can generally be defined as depression that fails to respond to adequate treatment. When initial treatment is not effective or tolerable after 6 to 8 weeks of therapy, the American Psychiatric Association (APA) treatment guidelines recommend dose titration, augmentation, or switching. In the case of a therapy switch, the body of evidence suggests that selection of an agent with a different mechanism of action than the initial agent may be the most effective treatment. Furthermore, when patients maintain continuous therapy for the recommended treatment duration, outcomes are improved compared with patients who discontinue therapy early. As a result, the most effective treatment strategies promote improved patient compliance as well as the use of agents associated with a reduced incidence of premature discontinuation and therapy change early in the treatment program. While data supporting these clinically effective components of therapy exist, few data are available demonstrating the most cost-effective therapeutic options for TRD.

CONCLUSION: This analysis suggests that managed care providers could benefit from a model that they can customize to evaluate the overall cost-effectiveness of different strategies in the management of depression.

KEYWORDS: Treatment-resistant, Depression, Economic model, Switch, SSRI, SNRI, Venlafaxine extended release (XR), Managed care, Cost-effectiveness

Copyright© 2007, Academy of Managed Care Pharmacy. All rights reserved.

Maj or depressive disorder (MDD) is the second most common psychiatric disorder in the United States. The lifetime prevalence for major depression appears to be between 6% and 16%. While the etiology of depression is not fully understood, evidence suggests that depression is the result of a complex interaction among biological, genetic, psychosocial, and environmental factors.

The Diagnostic and Statistical Manual, Fourth Edition, Text Revision (DSM-IV-TR) outlines common signs and symptoms of a major depressive episode. While not a definitive list, the following signs and symptoms are derived from DSM-IV-TR criteria:

1. Loss of interest, satisfaction, or pleasure in almost all activities, lasting at least 2 weeks
2. Appetite and sleep disturbance (early morning awakening is “classic”)
3. Decreased energy, concentration, or libido
4. Low self-esteem or excessive guilt
5. Recurrent thoughts of death or suicide
6. Psychomotor agitation or retardation
7. Occasional psychotic features (delusions, hallucinations)
8. Atypical features may be present in elderly, children/adolescents

The risk of depression may be related to the same combination of factors that produce depression. The highest rates of depression occur in individuals between the ages of 25 and 44 years. Females are almost twice as likely (10%-25%) as males (5%-12%) to experience depression. Genetic predisposition appears to be a significant risk factor. Individuals with first-generation relatives with major depression have a 1.5 to 3 times greater chance of experiencing depression compared with individuals without a similar family history. Individuals who have been victims of trauma or abuse are also at increased risk of depression.

Untreated depression has significant economic, social, physical, and psychological consequences. Several factors contribute to the economic burden of depression, including the prevalence of the disease, treatment rate, and rate and degree of impairment. Studies conducted in 1990 estimated that depressed workers in the United States lost an average of 5.6 productive hours per week. The same studies estimated that depression-related costs of direct treatment, lost earnings, and indirect workplace costs translated into an economic burden of between $44 and $53 billion per year. These estimates did not include labor costs associated with short- and long-term disability. Between 1990 and 2000, the total economic burden of depression remained relatively stable. While treatment rates increased substantially over that period, indirect workplace...
costs remained the largest single cost component. The characteristics of depression, including fatigue, reduced concentration, and difficulty performing routine tasks, all contribute to reduced productivity and increased absenteeism.

Patients with depression also have increased medical morbidity and mortality, including higher rates of premature death related to cardiovascular disease and myocardial infarction. In addition, 15% of people diagnosed with major depression will commit suicide, and two thirds of all suicides are related to depression.

Treatment Options

Seven different pharmacologic classes of medications can be used to treat depression (Table 1). The primary targets of most major antidepressant drug classes are the neurotransmitters serotonin and norepinephrine. The oldest agents are the tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs). TCAs inhibit the reuptake of serotonin and norepinephrine. MAOIs block the activity of enzymes (MAO-A, MAO-B) that are involved with the breakdown of serotonin, norepinephrine, and dopamine. Although both TCAs and MAOIs are effective, their use is limited, primarily because of side effects. TCAs are associated with cardiac, anticholinergic, and hypotensive side effects, as well as the potential for severe toxicity with overdose. Oral MAOIs require adherence to dietary restrictions, except for the newer transdermal systems at entry-level dosages. Newer agents are as effective as TCAs and MAOIs but have been shown to be safer and more tolerable.

Among the newer antidepressant agents, selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) have been commonly used. Studies have shown that SSRIs and SNRIs are effective for MDD when patients remain on therapy at the minimum recommended dose and duration of time set forth in clinical practice guidelines (at least 4-9 continuous months). Although many antidepressants have similar efficacy as first-line agents, few studies have compared them as second-line treatments following initial treatment failure.

Treatment Issues

In the managed care environment, initial and subsequent treatment efficacy, tolerability, and adherence influence clinical outcomes and pharmacoeconomic aspects of care. In the treatment of depression, outcomes of particular concern that are affected by these factors include rates of response and remission. While a response is defined by a partial improvement in depressive symptoms, remission is characterized by a full recovery from depressive symptoms and a return to normal functioning. Measures of economic burden (probability of paid employment, time lost from work, and total health care costs) correlate significantly to these clinical outcomes. In a study of 290 primary care patients with MDD, patients who achieved remission at 12 months had a 16% higher probability of paid employment, time lost from work, and total health care costs compared with patients with persistent depression (mean, 16.8 days). At year 2, patients who achieved remission had 49% lower total health care costs compared with those with persistent depression after adjusting for baseline costs and

Table 1: FDA-Approved Antidepressants and Their Proposed Mechanisms of Action

<table>
<thead>
<tr>
<th>Class/Drugs</th>
<th>Proposed Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic antidepressants (TCAs) (e.g., amitriptyline, nortriptyline, imipramine, desipramine)</td>
<td>Nonselectively inhibits serotonin, dopamine, and norepinephrine reuptake</td>
</tr>
<tr>
<td>Monoamine oxidase inhibitors (MAOIs) nonselective (e.g., phenelzine, tranylcypromine, isocarboxazid, selegeline [transdermal delivery system])</td>
<td>Inhibit enzymes (MAO-A, MAO-B) involved in the breakdown of serotonin, norepinephrine, and dopamine</td>
</tr>
<tr>
<td>Selective serotonin reuptake inhibitors (SSRIs) (e.g., fluoxetine, paroxetine, fluvoxamine, sertraline, citalopram, escitalopram)</td>
<td>Selectively inhibit serotonin reuptake; have some effects on other neurotransmitters</td>
</tr>
<tr>
<td>Norepinephrine and dopamine reuptake inhibitor (e.g., bupropion)</td>
<td>Inhibits norepinephrine and dopamine reuptake</td>
</tr>
<tr>
<td>Serotonin antagonist reuptake inhibitors (e.g., trazodone, nefazodone)</td>
<td>Primarily antagonize 5-HT2 receptors; nefazodone also modestly inhibits serotonin, norepinephrine, and dopamine reuptake</td>
</tr>
<tr>
<td>Noradrenergic and specific serotonergic agent (e.g., mirtazapine)</td>
<td>Antagonizes alpha2 autoreceptors and heteroreceptors; blocks 5-HT2A/C and 5-HT3 receptors; stimulates 5-HT1 receptors</td>
</tr>
<tr>
<td>Serotonin-norepinephrine reuptake inhibitors (SNRIs) (e.g., venlafaxine, duloxetine)</td>
<td>Inhibit serotonin and norepinephrine reuptake</td>
</tr>
</tbody>
</table>

FDA = U.S. Food and Drug Administration
other covariates. It should be noted, however, that only 1 of the economic endpoints in this study reached statistical significance.

Even when an agent is effective, lack of compliance can be a major barrier to successful treatment. The ability of the patient to tolerate a drug’s side effects strongly influences their compliance with therapy. Developing effective pharmacotherapy strategies that improve adherence and increase remission rates can potentially lower costs, reduce the risk of relapse, and improve psychosocial functioning and productivity.

Treatment-Resistant Depression

While there is no consensus on the definition of treatment-resistant depression (TRD), certain guidelines based on accepted clinical outcomes measures, such as the Hamilton Rating Scale for Depression (HAM-D), can be used to identify TRD. Importantly, most published definitions of TRD imply that the patient has had either no response or inadequate response to adequate treatment. Nierenberg and DeCecco suggested that TRD in patients who received adequate treatment could be defined based on any of 3 criteria: failure to achieve a minimum response (e.g., less than a 25% decrease from baseline HAM-D score), failure to achieve a response (e.g., less than a 50% decrease from baseline HAM-D score), or failure to achieve remission (e.g., a final HAM-D score of at least 7).

Patients who are treatment resistant use a disproportionately larger share of health care resources, have significantly more claims for comorbid conditions, and cost employers more in lost productivity compared with patients with major depression who respond to treatment.

Many depressed patients fail to achieve a response or remission after being placed on initial therapy with an SSRI. Second-line pharmacologic treatment options include titrating the dose of the initial antidepressant, augmenting therapy with a second agent, or switching to another SSRI or an agent with a different mechanism of action, such as an SNRI. The ARGOS study evaluated an SNRI, venlafaxine extended release XR, in patients who had failed to respond to or could not tolerate conventional antidepressants, primarily SSRIs, in a psychiatric outpatient setting. Those treated with venlafaxine XR had significantly higher remission rates (59.3%) at 24 weeks compared with those treated with conventional antidepressants (i.e., paroxetine, citalopram, sertraline, fluoxetine, mirtazapine, or other treatments) (51.5%; P < 0.001).

Recent results from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study showed that among patients who did not achieve remission with initial therapy, approximately one third achieved remission by augmentation with a second agent and about one fourth achieved remission by switching to a different antidepressant. Current American Psychiatric Association (APA) practice guidelines suggest that if at least moderate improvement is not observed following 6 to 8 weeks of initial pharmacotherapy, the treatment regimen should be reevaluated.

Managed Care Strategies to Improve Depression Treatment Outcomes

When depressed patients maintain continuous therapy for the recommended treatment duration, health care resource costs are reduced compared with patients who discontinue therapy early. It then follows that overall costs should decrease when patient compliance is improved and agents associated with a reduced incidence of early discontinuation and therapy change are utilized early in the treatment program. Managed care organizations (MCOs) are challenged to identify optimal, cost-effective strategies for the treatment of depression and improve patient adherence to antidepressant therapy.

MCOs have a limited role in direct patient care; therefore, they must be creative in developing programs or identifying treatment strategies that have the potential to influence patient adherence. Compared with standard care models, patient support programs (collaborative care model) that educate patients about the value of medication adherence, increase awareness of potential adverse events associated with antidepressant medications, and provide follow-up to ensure continued compliance were found to improve efficacy in the treatment of depression.

Mail-based educational intervention has also been shown to positively impact patient adherence to therapy.

When initial treatment is not effective or tolerable, APA treatment guidelines recommend that the clinician should consider treatment with another agent. While there is not a solid body of data to guide clinicians in decisions concerning second-line treatment options, the STAR*D trial evaluated 4 levels of treatment in patients who had not responded adequately to an initial standard antidepressant trial: level 1 (identify treatment-resistant patients), level 2 (switch and/or augment antidepressants), level 3 (switch to an agent with a different mechanism of action), and level 4 (treat with either an MAOI or venlafaxine XR plus mirtazapine). The trial results may help to define which subsequent treatment strategies, in what sequence, and in what combination(s) produce the best clinical results with the least side effects.

Data on switching and related resource utilization in managed care patients are limited. However, some evidence exists that an earlier switch (before 6 weeks of initial treatment) to an agent with an alternative mechanism of action may prevent unnecessary cycling.

Direct medical costs associated with switching antidepressants were recently reported in a poster presented at the Academy of Managed Care Pharmacy Educational Conference, October 5-8, 2006. Analysis of data from a national database (PharMetrics) of medical and pharmacy claims suggested that, overall, costs declined when patients switched antidepressant therapies.
classes. Greater cost reductions due to reduced medical costs were realized when patients switched to an SNRI (venlafaxine) from an SSRI (citalopram, fluoxetine, paroxetine, sertraline) compared with switching to an SSRI from an SNRI (Figures 1 and 2). In addition, higher costs were associated with patients who switched among multiple SSRIs before switching to an SNRI. However, it is important to note that these findings may have been influenced by differences in the baseline characteristics of the patients involved.

Recently, an economic model was developed to explore the results of using generic SSRIs, such as escitalopram, paroxetine controlled release, sertraline, and venlafaxine XR as second-line agents for the treatment of unresolved depression following a treatment failure. Efficacy parameters used to develop the model were derived from clinical trial results based on the HAM-D and Montgomery-Asberg Depression Rating Scale (MADRS). While managed care experts express a preference for the self-administered Patient Health Questionnaire or the Quality Improvement of Depression Scale as evaluation tools, clinical studies do not use those instruments to evaluate primary endpoints, hence the reliance on HAM-D and MADRS scores in the model.

The economic model, which was constructed in Microsoft Excel, is a budget-impact and decision analysis tool that allows the user to input managed care-specific information. Results of the analyses and a full description of the model are addressed in the next article of this publication.

Conclusion

When patients with depression fail initial therapy, the result is often increased costs to health plans and a poorer quality of life for patients. Because no clear data support the use of one agent over another as second-line therapy in patients with TRD, managed care providers could benefit from a model that they can customize with their own variables, such as acquisition costs and outcome parameters, to evaluate the overall cost-effectiveness of different strategies.

Acknowledgments

The author would like to acknowledge Wendy Gloffke, PhD, medical writer, and the staff writer, Communications Impact, LLC, for their assistance with this article.

DISCLOSURES

The author serves as a consultant and/or on the speakers bureau for Wyeth Pharmaceuticals Inc., Cephalon, and Bristol-Myers Squibb. He received an honorarium for his participation in this study.

REFERENCES

Treatment-Resistant Depression: Managed Care Considerations

44. Kruzikas D, Khandher RK, McLaughlin T, Tedesch M. Patterns of antidepressant use and cost implications of product switching. Poster presented at: Academy of Managed Care Pharmacy Educational Conference; October 5-8, 2006; Nashville, TN.

ABSTRACT

BACKGROUND: Depressed patients who initially fail to achieve remission when placed on a selective serotonin reuptake inhibitor (SSRI) may require a second treatment.

OBJECTIVE: The purpose of this study was to evaluate the effectiveness, cost, cost-effectiveness, and budget impact of second-line pharmacologic treatment for major depressive disorder (MDD).

METHODS: A cost-effectiveness analysis was conducted to evaluate second-line therapies (citalopram, escitalopram, fluoxetine, paroxetine, paroxetine controlled release (CR), sertraline, and venlafaxine extended release (XR)) for the treatment of depression. Effectiveness data were obtained from published clinical studies. The primary outcome was remission defined as a score of 7 or less on the Hamilton Rating Scale for Depression (HAM-D) or a score of 10 or less on the Montgomery-Asberg Depression Rating Scale (MADRS) depression rating scales. The wholesale acquisition cost (WAC) for medications and medical treatment costs for depression were included. The perspective was derived from a managed care organization (MCO) with 500,000 members, a 1.9% annual incidence of depression, and treatment duration of 6 months. Assumptions included: second-line treatment is not as effective as first-line treatment, WAC price reflects MCO costs, and side effects were identical. Sensitivity analyses were conducted to determine variables that influenced the results.

RESULTS: Second-line remission rates were 20.4% for venlafaxine XR, 16.9% for sertraline, 16.4% for escitalopram, 15.1% for generic SSRIs (weighted average), and 13.6% for paroxetine CR. Pharmacy costs ranged from $163 for generic SSRIs to $319 for venlafaxine XR. Total cost per patient achieving remission was $14,275 for venlafaxine XR, followed by $16,100 for escitalopram. The incremental cost-effectiveness ratio (ICER) for venlafaxine XR compared with generic SSRIs was $2,073 per patient achieving remission, followed by escitalopram with an ICER of $3,566. The model was most sensitive to nonpharmacy costs.

CONCLUSION: This analysis suggests that second-line treatment of depression with venlafaxine XR may result in more patients achieving remission, with an ICER that is favorable to other therapies.

KEYWORDS: SSRI, SNRI (serotonin norepinephrine reuptake inhibitor), Antidepressants, Cost-effectiveness model, Major depressive disorder, Budget-impact model, Venlafaxine extended release (XR), Managed care

Copyright© 2007, Academy of Managed Care Pharmacy. All rights reserved.

A Budget-Impact and Cost-Effectiveness Model for Second-Line Treatment of Major Depression

Daniel C. Malone, PhD

ABSTRACT

BACKGROUND: Depressed patients who initially fail to achieve remission when placed on a selective serotonin reuptake inhibitor (SSRI) may require a second treatment.

OBJECTIVE: The purpose of this study was to evaluate the effectiveness, cost, cost-effectiveness, and budget impact of second-line pharmacologic treatment for major depressive disorder (MDD).

METHODS: A cost-effectiveness analysis was conducted to evaluate second-line therapies (citalopram, escitalopram, fluoxetine, paroxetine, paroxetine controlled release (CR), sertraline, and venlafaxine extended release (XR)) for the treatment of depression. Effectiveness data were obtained from published clinical studies. The primary outcome was remission defined as a score of 7 or less on the Hamilton Rating Scale for Depression (HAM-D) or a score of 10 or less on the Montgomery-Asberg Depression Rating Scale (MADRS) depression rating scales. The wholesale acquisition cost (WAC) for medications and medical treatment costs for depression were included. The perspective was derived from a managed care organization (MCO) with 500,000 members, a 1.9% annual incidence of depression, and treatment duration of 6 months. Assumptions included: second-line treatment is not as effective as first-line treatment, WAC price reflects MCO costs, and side effects were identical. Sensitivity analyses were conducted to determine variables that influenced the results.

RESULTS: Second-line remission rates were 20.4% for venlafaxine XR, 16.9% for sertraline, 16.4% for escitalopram, 15.1% for generic SSRIs (weighted average), and 13.6% for paroxetine CR. Pharmacy costs ranged from $163 for generic SSRIs to $319 for venlafaxine XR. Total cost per patient achieving remission was $14,275 for venlafaxine XR, followed by $16,100 for escitalopram. The incremental cost-effectiveness ratio (ICER) for venlafaxine XR compared with generic SSRIs was $2,073 per patient achieving remission, followed by escitalopram with an ICER of $3,566. The model was most sensitive to nonpharmacy costs.

CONCLUSION: This analysis suggests that second-line treatment of depression with venlafaxine XR may result in more patients achieving remission, with an ICER that is favorable to other therapies.

KEYWORDS: SSRI, SNRI (serotonin norepinephrine reuptake inhibitor), Antidepressants, Cost-effectiveness model, Major depressive disorder, Budget-impact model, Venlafaxine extended release (XR), Managed care

Copyright© 2007, Academy of Managed Care Pharmacy. All rights reserved.

A Budget-Impact and Cost-Effectiveness Model for Second-Line Treatment of Major Depression

Daniel C. Malone, PhD

ABSTRACT

BACKGROUND: Depressed patients who initially fail to achieve remission when placed on a selective serotonin reuptake inhibitor (SSRI) may require a second treatment.

OBJECTIVE: The purpose of this study was to evaluate the effectiveness, cost, cost-effectiveness, and budget impact of second-line pharmacologic treatment for major depressive disorder (MDD).

METHODS: A cost-effectiveness analysis was conducted to evaluate second-line therapies (citalopram, escitalopram, fluoxetine, paroxetine, paroxetine controlled release (CR), sertraline, and venlafaxine extended release (XR)) for the treatment of depression. Effectiveness data were obtained from published clinical studies. The primary outcome was remission defined as a score of 7 or less on the Hamilton Rating Scale for Depression (HAM-D) or a score of 10 or less on the Montgomery-Asberg Depression Rating Scale (MADRS) depression rating scales. The wholesale acquisition cost (WAC) for medications and medical treatment costs for depression were included. The perspective was derived from a managed care organization (MCO) with 500,000 members, a 1.9% annual incidence of depression, and treatment duration of 6 months. Assumptions included: second-line treatment is not as effective as first-line treatment, WAC price reflects MCO costs, and side effects were identical. Sensitivity analyses were conducted to determine variables that influenced the results.

RESULTS: Second-line remission rates were 20.4% for venlafaxine XR, 16.9% for sertraline, 16.4% for escitalopram, 15.1% for generic SSRIs (weighted average), and 13.6% for paroxetine CR. Pharmacy costs ranged from $163 for generic SSRIs to $319 for venlafaxine XR. Total cost per patient achieving remission was $14,275 for venlafaxine XR, followed by $16,100 for escitalopram. The incremental cost-effectiveness ratio (ICER) for venlafaxine XR compared with generic SSRIs was $2,073 per patient achieving remission, followed by escitalopram with an ICER of $3,566. The model was most sensitive to nonpharmacy costs.

CONCLUSION: This analysis suggests that second-line treatment of depression with venlafaxine XR may result in more patients achieving remission, with an ICER that is favorable to other therapies.

KEYWORDS: SSRI, SNRI (serotonin norepinephrine reuptake inhibitor), Antidepressants, Cost-effectiveness model, Major depressive disorder, Budget-impact model, Venlafaxine extended release (XR), Managed care

Copyright© 2007, Academy of Managed Care Pharmacy. All rights reserved.
has been associated with a reduction in the rate of relapse and improved psychological functioning compared with patients with partial response.13-16 Studies indicate that compared with patients who achieve remission, those with incomplete resolution of symptoms are 3 to 5 times more likely to relapse.15,17

Consensus has suggested that values of 7 or less on the HAM-D are indicative of clinical remission.18,19 For the MADRS instrument, cut-off values of 9 or less have been found to be approximately 1 standard deviation from the mean of nondepressed patients,20 with various other cut-off values (9-12) having been used.21 Consequently, many clinicians have come to accept that values of 10 or less are likely to indicate remission.

Evaluating Antidepressant Therapy Effectiveness

Several meta-analyses and evidence reviews have been conducted to evaluate the effectiveness of selective serotonin reuptake inhibitor (SSRI) and serotonin norepinephrine reuptake inhibitor (SNRI) products.22,23 Most recently, RTI International conducted an evaluation of second-generation antidepressants and their comparative effectiveness for the treatment of depression.24,25 The overall conclusion of the report was that there was little evidence to indicate that SSRIs and SNRIs are clinically different from one another despite evidence of statistical differences.25 The results suggested that escitalopram improved response over citalopram (relative risk [RR], 1.14; 95% confidence interval [CI], 1.04-1.26), sertraline improved response over fluoxetine (RR, 1.11; 95% CI, 1.01-1.21), and venlafaxine extended release (XR) improved response over fluoxetine (RR, 1.12; 95% CI, 1.01-1.24) as well as having higher rates of remission (odds ratio [OR], 1.42; 95% CI, 1.17-1.73).26 The authors commented that these differences represented a relatively small difference on the HAM-D instrument and were likely to be clinically insignificant. Another aspect of the RTI report was that no overall analysis was reported, which is unfortunate given the substantial amount of data collected. In addition, the report focused on studies that used identical instruments, such as the HAM-D, to evaluate remission rates. This analytical decision prevents indirect comparisons between agents that might provide valuable information about their effectiveness.

One of the major difficulties of conducting such meta-analyses is that published reports sometimes fail to contain sufficient information to properly evaluate the study. For example, a proper meta-analysis will require the mean and standard deviation of the treatment groups both at baseline and at the end of the study. It is not uncommon for authors to report only the standard deviation at baseline but not at the end of the study. Also, many authors will report only the change from baseline score and not the score at the end of the study. Another complicating issue when comparing studies is that some analyses will not report means, but only percentages of patients achieving some threshold. As mentioned earlier, some consensus exists on values of the HAM-D and MADRS that constitute remission, but not all studies use identical cut-off points. Therefore, studies that fail to report an end-of-study mean and a standard deviation cannot be used if a different threshold for remission is used.

Previous Economic Studies of Antidepressant Therapy

A recent review of the literature evaluated the economics of antidepressants and various other therapies for the treatment of MDD.26 This review identified 18 manuscripts that evaluated the cost-effectiveness of antidepressant therapies, most of which were models. None of the analyses based on clinical trials compared second-generation antidepressants, although some economic models have compared SSRIs as a group to tricyclic antidepressants (TCAs). Results from the models evaluating these classes of antidepressants were mixed, to some extent depending on how side effects and adverse effects were taken into consideration. For example, a Canadian study reported no advantage of SSRIs versus TCAs with respect to cost-effectiveness.27 A number of other studies have suggested that SSRIs are cost-effective relative to TCAs.28-30

Other models have compared specific SSRIs and SNRIs. All of these models either stated explicitly or assumed that treatment was for first-line therapy. Many models included options for a failed response to the first-line agent, but there was heterogeneity in the structure of the models with respect to second-line treatment options. Another important issue to highlight with economic models is the outcome of interest. While all studies have used some measure of patient-reported symptoms, the operationalization of these severity scales is not necessarily consistent. Some models have used response, while others have used remission as the outcome of interest. Other studies have converted performance on the HAM-D or MADRS instruments into symptom-free days (SFDs) or depression-free days (DFDs), which were essentially equivalent. Many of the economic studies reported to date derive estimates of clinical efficacy from a single study, which can be problematic if the clinical trial population does not reflect the overall population being treated. A brief summary of the models and their findings is provided in some detail in the following section.

Summary of Economic Models

Wade et al. compared citalopram and escitalopram using a 6-month probabilistic model from a United Kingdom (U.K.) perspective.30 The study used a 6-month time horizon, and the measure of effectiveness was remission, defined as a MADRS score of 12 or less without switching medications. The study found that escitalopram was more cost-effective than citalopram, with the overall remission rate for escitalopram being approximately 10% greater than citalopram while costs were about 16% lower for escitalopram. Using the Monte Carlo sensitivity analysis of 10,000 iterations, more than 99% of the cases were situations in which escitalopram was a dominant therapy
A Budget-Impact and Cost-Effectiveness Model for Second-Line Treatment of Major Depression

(less cost and more effective). It should be noted that the prices of escitalopram and citalopram in the U.K. were identical; therefore, cost differences were driven by decreased utilization of nondrug health care resources for escitalopram relative to citalopram.

In another study, Demyttenaere et al. reported on the cost-effectiveness of citalopram, escitalopram, and venlafaxine using a 2-stage model with a 6-month time horizon. The study was evaluated from the Belgium Insurance Scheme as well as from a societal perspective. The first stage of the model assumed that patients who did not have a suicide attempt were treated with antidepressants and either achieved remission or could be switched to another agent or have the initial antidepressant dose titrated. Patients who had a suicide attempt were entered into a different model whereby treatment options included switching therapies, augmentation, or titration. Clinical evidence for the model was based on 3 clinical trials comparing 2 of 3 agents directly (citalopram to escitalopram, escitalopram to venlafaxine XR). It was found that escitalopram was more effective and less costly than citalopram. Remission rates were 52.8% for escitalopram versus 43.5% for citalopram. The societal cost of generic citalopram was €0.85 (euros) for 20 mg per day; escitalopram was €1.14 for 10 mg per day. Results from the Monte Carlo sensitivity analysis found that in 93.5% of the cases, escitalopram was dominant when compared with citalopram. In contrast, the comparison with venlafaxine XR was equivocal. Clinical efficacy rates were nearly identical between the 2 agents (escitalopram = 69.9%, venlafaxine XR = 69.7%). Results from the Monte Carlo sensitivity analysis suggested that escitalopram was more cost-effective than venlafaxine XR in approximately 61% of the cases. This result appears to be due to differences in medication costs, with venlafaxine being slightly more expensive than escitalopram.

Another study comparing citalopram with escitalopram was conducted by Hemels et al. This analysis was conducted from an Austrian societal and Social Healthcare Insurance System perspective using a 6-month time frame. Similar to previous models, the primary outcome of interest was remission of depression symptoms, and response was defined as a 50% reduction in depression symptoms from baseline. Clinical efficacy was derived from clinical trials including both agents. Because the costs of the medications were nearly identical, results from the model were driven by statistical differences in clinical efficacy. Again, escitalopram was found to be a dominant strategy regardless of the perspective taken. One-way sensitivity analyses suggested that the results were consistent across the range of parameters used in the model.

Kulp et al. used a Markov model to compare escitalopram with venlafaxine XR for first-line treatment of depression from a German health insurance perspective. The model included 3 outcomes: response (greater than 50% reduction from baseline), partial response (25% to 50% reduction from baseline), or no response. Clinical efficacy was derived from a single randomized clinical trial comparing the 2 agents. For escitalopram, 77.4% of subjects were considered responders to therapy compared with 79.6% for venlafaxine XR. Cost-effectiveness of the respective therapies was expressed in terms of proportion of patients responding to therapy. Drug costs were based on defined daily doses as supplied by IMS Health Inc. and were €1.30 for escitalopram and €1.81 for venlafaxine XR. The duration of the study was 70 days. The results of the model suggested that the incremental cost-effectiveness of using venlafaxine XR was €7,446 if general practitioners treated patients.

Similarly, Fernandez et al. reported on the cost-effectiveness of escitalopram relative to venlafaxine XR based on the multi-center and multicountry clinical trial used in the Kulp et al. analysis. However, this analysis was slightly different because the outcome of interest was quality of life as measured by the EuroQOL (quality of life) questionnaire (EQ-5D). Health care resource use was also captured, and health care costs were used from 6 of the 8 countries represented in the study, which was conducted from a societal perspective. No statistically significant difference between the 2 treatment groups was found with respect to EQ-5D scores. Health care resource use varied by the type of health care provider evaluated, but there was no clearly consistent trend or difference between escitalopram or venlafaxine XR. Likewise, there was no significant difference in total health care costs between the 2 groups. To simulate cost-effectiveness, a bootstrap sampling program was run 10,000 times. The results found that escitalopram was less costly in the majority of cases, but there was no clear difference in quality of life.

In another model evaluating escitalopram, Sullivan et al. constructed a 2-stage model of the treatment of depression that incorporated side effects of the various SSRI products on the market in the United States. The model included patented and generic SSRI products with data on adverse events derived from the literature or product package inserts. The time frame of the model was 6 months, and data were derived from a managed care organization (MCO) perspective. The authors valued the costs of adverse events at more than $5,000 based on a previously reported study. The model used quality-adjusted life-years (QALYs) as the primary outcome of interest, adjusting QALY values downward in the presence of adverse events. In this model, escitalopram was deemed to be the least costly ($3,891) and most effective (0.34) compared with citalopram, generic fluoxetine, venlafaxine XR, sertraline, generic paroxetine, paroxetine controlled release (CR), or venlafaxine. However, CIs for cost and effect were overlapping across all agents. The authors reported that in the analysis comparing escitalopram with fluoxetine, more than 99% of the cases from a simulation of 10,000 were below the $50,000-per-QALY threshold that is commonly used to define health technologies as cost-effective.

Using a clinical trial framework, Revicki et al. evaluated the
cost-effectiveness of pharmacotherapy (paroxetine or bupropion) or cognitive behavior therapy with community referral for major depression in women receiving care at public health or social service facilities over a 12-month time frame in the Washington, DC, metropolitan area. The primary outcome of interest was QALYs, which were estimated from DFDs. To determine the number of DFDs over the course of the study, the following algorithm was used: HAM-D score of 7 or less = 1 DFD; HAM-D score of 8 to 21 = proportional weight to DFD; HAM-D of 22 or greater = 0 DFD. DFDs were then converted to QALYs. Health care resource use was obtained from patient charts for behavioral therapy and patient self-reports using structured telephone interviews. Costs of medical services were based on a Maryland Medicaid program fee schedule, and medication costs were based on the lowest published average wholesale price (AWP). The study found that pharmacotherapy was more effective than community referral after 12 months. The cost per QALY was $30,023 for pharmacotherapy and $37,568 for cognitive behavior therapy. Results were not presented separately for paroxetine and bupropion.

Another model compared 3 groups of antidepressants with respect to cost-effectiveness. In this model, SSRIs consisting of fluoxetine, paroxetine, and fluvoxamine were compared with SNRIs (venlafaxine) and TCAs (amitriptyline). The perspective of the model was derived from the U.K. National Health System with a 6-month time horizon. An expert panel of 3 general practitioners and 2 psychiatrists assisted in the development of the decision model and provided estimates of probabilities for decision nodes where clinical evidence was not available. Clinical efficacy was obtained from a meta-analysis of clinical trials for SSRIs and venlafaxine, as well as from a single study for amitriptyline that was compared with a meta-analysis of TCA studies. The clinical parameters of interest were remission, which was defined as a score of 7 or less on the HAM-D instrument. Remission rates were also converted into SFDs, but the exact algorithm was not provided. Overall remission rates were 45% for venlafaxine, 35% for SSRIs, and 24% for amitriptyline. The low response rate for amitriptyline was due to a much higher drop-out rate than experienced with the other agents and to an intention-to-treat analysis that was used to calculate efficacy. The number of SFDs over the 6-month study period was estimated to be 61 for venlafaxine, 52 for SSRIs, and 44 for amitriptyline. The cost per SFD was £21.20 (British pounds) for venlafaxine, £26.12 for SSRIs, and £31.80 for amitriptyline.

In another analysis involving venlafaxine, Trivedi et al. developed a cost-effectiveness model based on a meta-analysis of 8 clinical trials involving venlafaxine and SSRIs (fluoxetine, paroxetine, and fluvoxamine). The meta-analysis was the same one used by Lenox-Smith et al. and was conducted from the perspective of a U.S. MCO with an 8-week time horizon. As with the previous economic model, this analysis evaluated the percentage of patients achieving remission and converted this percentage into DFDs. The calculation of DFDs in this study was similar to the calculation of SFDs in other studies, whereby HAM-D scores of 7 or less = 1 DFD, values greater than 15 = 0 DFD, and scores between 8 and 14 were linearly weighted to equal values between 0 and 1 DFD. This model evaluated efficacy at 2-week intervals. Also, quality-adjusted days (QADs) were computed by assigning utility values to DFDs based on a previously published study. Medication prices were based on 2002 AWPs. Where generic medications were available, the lowest-priced product was used and weighted by an estimate of the generic to brand use of the product. Nonpharmacy costs were limited to physician visits and laboratory costs. Results of the analysis found that venlafaxine had a higher percentage of patients achieving remission (44.9%) than did SSRIs (34.7%); venlafaxine also had more DFDs (22.82) than did SSRIs (18.61). The cost per patient achieving remission was $1,304 for venlafaxine and $1,515 for SSRIs. The cost per DFD was $25.66 for venlafaxine and $28.25 for SSRIs. A Monte Carlo simulation found the incremental cost-effectiveness ratio for SSRIs to have a 95% CI that ranged from $326 to $1,176, with a mean value of $586.

In summary, based on the studies conducted to date, SSRIs are cost-effective relative to TCAs for treatment of MDD. Also, many studies conclude that treatment with products producing fewer side effects or those more recently marketed appear to be cost-effective. However, a major limitation of these analyses is that they are largely based on select clinical trials that tended to enroll naïve patients with MDD. No known economic models have examined treatment-resistant MDD.

Budget Impact of Antidepressant Therapies

As mentioned previously, antidepressants represent the third-largest class of pharmaceuticals in the world in terms of dollar sales. MCOs have recognized the need to appropriately manage these agents. Due to the availability of generic SSRI products, it makes sense for MCOs to encourage their first-line use because of their relatively similar efficacy but substantially lower costs. However, if patients fail initial therapy, choice of the second agent should incorporate such factors as reasons for failure, including side effects, nonresponse, and patient adherence. It is also important to keep in mind that the budget for antidepressants will include expenditures for the initial and treatment-resistant episodes. Because most health plans contain minimal data on reasons for failure of the initial agent, it becomes difficult to actively manage patients receiving antidepressant therapies. Health plans have limited alternatives for obtaining this data other than examining the pharmacy budget and estimating patient persistence to antidepressants by using pharmacy claims.

The Academy of Managed Care Pharmacy (AMCP) and the Foundation for Managed Care Pharmacy (FMCP) have written guidelines for formulary management explicitly stating that...
health plans should evaluate pharmaceuticals from a cost-effectiveness and budget-impact perspective. Budget-impact analysis is a necessary component because it gives health plans the ability to anticipate future expenditures for pharmaceuticals that are added to the formulary and to explore strategies that might assist in controlling expenditures and improving health outcomes of the enrolled population. For these reasons, dossiers submitted to health plans should incorporate a budget-impact assessment.

In an attempt to meet the real-world issues regarding the use of antidepressants, a cost-effectiveness and budget-impact model was constructed and is outlined in the following section. More specifically, the purpose of this model was to examine the cost-effectiveness of pharmacologic treatment options for treatment-resistant MDD and to assess the overall budget implications for an MCO.

Methods

Model Description

A budget-impact and decision-analysis model was constructed in Microsoft Excel. Products included in the model were generic SSRIs consisting of citalopram, fluoxetine, and paroxetine; escitalopram (Lexapro); paroxetine CR (Paxil CR); sertraline (Zoloft); and venlafaxine XR (Effexor XR). Even though it is off-patent, fluvoxamine was not included in the model due to lack of clinical studies (see the following section) and its infrequent use. Venlafaxine immediate release was also not included in the model because it is more expensive than venlafaxine XR and provides no additional advantages over the extended-release formulation. Duloxetine was also not included in the study because, at the time the study was conducted, no evidence concerning its efficacy in treatment-resistant depression had been published. The model used an MCO perspective with a 6-month time horizon.

Model Structure

The model first takes into account the proportion of patients who failed first-line therapy based on estimates from clinical trials. The model assumes that if patients failed first-line treatment, they continued on to second-line therapy. For those patients with an improvement (defined as response), they continued and an assessment of remission was determined.

For patients responding to therapy but not achieving remission, they entered 1 of 3 branches: switch, titrate, or augment therapy. The use of generic SSRIs was assumed for patients who switched or augmented therapies. For titration, it was assumed that dose escalation was conducted, whereby the cost of treatment was increased but the clinical probabilities remained constant. Patients who did not have an improvement were considered failures due to either a lack of efficacy or an adverse drug reaction (ADR). If patients had a lack of efficacy, treatment was switched, titrated, or augmented. For those who failed due to an ADR, it was assumed that they switched therapies (to another generic SSRI).

Cost and Market Share

The model begins with information on the health plan organization and prevalence of treated depression. The base model assumed a health plan of 500,000 members with a prevalence rate of 1.9%. The model also assumed that the duration of treatment was 180 days and that medications would be supplied in 30-day increments. Consumer cost sharing was initially set at $10, $20, and $40 for first (generic), second (preferred branded SSRIs), and third tier (nonpreferred branded SSRIs), respectively. In this analysis, no agents were assigned into the third tier.

The model included the ability to alter various aspects of product use. Input parameters included the daily average consumption (commonly referred to as DACON); wholesale acquisition price (WAC); rebates, if any, expressed in terms of percentage off WAC; market share by product strength; and copayment tier. The model assumed that DACON for all products was constant and had a value of 1, and there was no rebate for any of the products. Medication prices were obtained from a Medispan data file (September 2005). The market share by strength was taken from data obtained from IMS Health Inc. (December 2004). A weighted price for each product was calculated to reflect the market share. For example, citalopram is marketed in 10-mg, 20-mg, and 40-mg strengths. From IMS Health, Inc. data, it was determined that the 10-mg strength comprised 6.5% of all citalopram sales, whereas the 20-mg and 40-mg strengths comprised 53.2% and 40.3% of the market, respectively. The WAC price for each strength of citalopram was $0.64. The net plan cost for each agent was calculated by multiplying the weight price by the days of treatment, but subtracting out patient copayments. Distributions of market share and price are shown in Table 1.

Generic SSRIs were assumed to be first-line treatment for MDD. The model share for first-line treatment was 20%, 40%, and 40% for citalopram, fluoxetine, and paroxetine, respectively. These market shares were also based on data from IMS Health Inc. If a patient failed initial treatment, the model assumed another agent such as a branded SSRI, a generic SSRI, or venlafaxine XR, which was then used. The respective market share for second-line use was 15% for citalopram, 15% for fluoxetine, 15% for escitalopram, 15% for paroxetine, 5% for paroxetine CR, 20% for sertraline, and 15% for venlafaxine XR. Thus, generic SSRIs accounted for 45% of second-line agents.

The base analysis was conducted by increasing the market share of venlafaxine XR from 15% to 20%; generic SSRIs would decrease by 3% and sertraline would decrease by 2%. The other products’ market share would remain the same.
Rather than use expert panels to estimate nondrug medical care costs, such as physician visits, laboratory tests, and inpatient mental health care, the costs associated with remission, response, and treatment failure were based on an analysis of 1,814 persons enrolled in 10 antidepressant studies conducted by Group Health Cooperative in western Washington state. Clinical response to antidepressant therapy was categorized in an identical manner as the economic model. Medical care costs were then estimated based on the end-of-study status with respect to clinical outcomes.

Clinical Evidence

Clinical evidence for this study came from published trials of the agents of interest. The following criteria were used to identify relevant studies: (1) randomized, comparative, double-blind, controlled clinical trials of SSRIs and SNRIs in the treatment of MDD that evaluated any of the following: citalopram, escitalopram, fluoxetine, sertraline, paroxetine, and venlafaxine XR; (2) depression was assessed with either the HAM-D or MADRS instruments; (3) a duration of at least 8 weeks of therapy; (4) a sample size of greater than 30 patients per group; and (5) reported baseline mean and standard deviation as well as end-of-study mean and standard deviation. Studies were identified through searches of MEDLINE and PsycINFO databases using the following search strategies. First, studies involving the treatment of depression were elected and limited to double-blind trials. Next, further restrictions were implemented to the medications of interest for this study (citalopram, escitalopram, fluoxetine, paroxetine, sertraline, and venlafaxine XR). For the PsycINFO database, searches were conducted using terms related to depression or major depression. Studies were limited to clinical trials and to the medications of interest. Finally, MEDLINE and PsycINFO results were compared and duplicates removed.

TABLE 1 Cost, Distribution by Market Share, and Weighted Cost for Selective Serotonin Reuptake Inhibitors and Serotonin Norepinephrine Reuptake Inhibitors

<table>
<thead>
<tr>
<th>Product</th>
<th>Strength (mg)</th>
<th>WAC ($)</th>
<th>% of Market by Strength</th>
<th>Weighted Price by Market Share ($)</th>
<th>Weighted Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citalopram</td>
<td>10</td>
<td>0.64</td>
<td>6.5</td>
<td>0.04</td>
<td>0.64</td>
</tr>
<tr>
<td>Citalopram</td>
<td>20</td>
<td>0.62</td>
<td>53.2</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Citalopram</td>
<td>40</td>
<td>0.67</td>
<td>40.3</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Escitalopram</td>
<td>5</td>
<td>1.85</td>
<td>1.3</td>
<td>0.02</td>
<td>1.86</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>10</td>
<td>1.85</td>
<td>61.9</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>Escitalopram</td>
<td>20</td>
<td>1.89</td>
<td>36.8</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Fluoxetine generic</td>
<td>10</td>
<td>0.44</td>
<td>12.1</td>
<td>0.05</td>
<td>0.48</td>
</tr>
<tr>
<td>Fluoxetine generic</td>
<td>20</td>
<td>0.48</td>
<td>72.6</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Fluoxetine generic</td>
<td>40</td>
<td>0.48</td>
<td>15.3</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Paroxetine generic</td>
<td>10</td>
<td>1.97</td>
<td>15.6</td>
<td>0.31</td>
<td>2.08</td>
</tr>
<tr>
<td>Paroxetine generic</td>
<td>20</td>
<td>2.05</td>
<td>53.8</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>Paroxetine generic</td>
<td>30</td>
<td>2.12</td>
<td>12.3</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Paroxetine generic</td>
<td>40</td>
<td>2.24</td>
<td>18.3</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Paroxetine CR</td>
<td>12.5</td>
<td>2.40</td>
<td>31.7</td>
<td>0.76</td>
<td>2.48</td>
</tr>
<tr>
<td>Paroxetine CR</td>
<td>25</td>
<td>2.50</td>
<td>54.0</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>Paroxetine CR</td>
<td>37.5</td>
<td>2.58</td>
<td>14.4</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Sertraline</td>
<td>25</td>
<td>2.30</td>
<td>6.7</td>
<td>0.15</td>
<td>2.30</td>
</tr>
<tr>
<td>Sertraline</td>
<td>50</td>
<td>2.30</td>
<td>41.1</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Sertraline</td>
<td>100</td>
<td>2.30</td>
<td>52.2</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>Venlafaxine XR</td>
<td>37.5</td>
<td>2.53</td>
<td>10.5</td>
<td>0.27</td>
<td>2.91</td>
</tr>
<tr>
<td>Venlafaxine XR</td>
<td>75</td>
<td>2.84</td>
<td>48.0</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>Venlafaxine XR</td>
<td>150</td>
<td>3.09</td>
<td>41.5</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Weighted generic price</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.15</td>
</tr>
</tbody>
</table>

WAC = wholesale acquisition cost.
Clinical efficacy was determined by examining data for response and remission. Response was defined as a 50% or greater improvement from the baseline depression rating score. Remission was defined as a score of 7 or less for the HAM-D or 10 or less for the MADRS instruments. For generic medications, remission and response rates were weighted by market share, similar to medication pricing. The clinical evidence for paroxetine CR was based on studies including paroxetine and paroxetine CR. Studies of second-line treatment (treatment-resistant) for depression were less common, leading to relaxation of the inclusion and exclusion criteria. Treatment-resistant evaluations included both randomized-blinded and open-label studies.

Methods to Combine Clinical Studies
For each product of interest, data were summarized across all studies evaluating that specific agent by weighting the included studies by sample size. For those studies not reporting the percentage of patients who achieved remission or response, a normal distribution was used to estimate the proportion achieving these thresholds. Because of the lack of data for paroxetine CR, it was assumed that estimates of clinical efficacy were similar to nonextended-release paroxetine.

Second-line response rates were estimated by adjusting downward response and remission rates from initial treatment trials. The amount of the adjustment was obtained from clinical studies that examined the use of each agent in treatment-resistant depression.

Discontinuation rates were also estimated from clinical trials. Similar to clinical efficacy rates, discontinuation rates were weighted by sample size to obtain a pooled estimate for each agent.

Estimates of patients switching or titrating medications were obtained from a retrospective analysis of pharmacy claims conducted by Verispan. However, due to the time frame of that study, paroxetine CR and escitalopram were not included. Therefore, it was assumed that titration and switch rates for paroxetine CR were similar to paroxetine, and the same rates for escitalopram were based on citalopram.

Results
Previous studies have found that the treated prevalence of MDD is 1.9%. Taking this into account, the proportion of patients who would undergo treatment in a health plan with 500,000 individuals was estimated to be 9,500. This estimated population serves as the basis for our budget-impact model. The remission rate for first-line generic SSRIs was 35.5%, representing 3,371 enrollees with depression. Therefore, a total of 6,129 enrollees with depression would be unsuccessfully treated and moved to a second-line agent in this analysis.

Clinical Evidence
After applying inclusion and exclusion criteria, a total of 2 studies for citalopram, 7 studies for fluoxetine, 2 studies for escitalopram, 4 studies for paroxetine, 2 studies for sertraline, and 17 studies for venlafaxine were identified. The estimated rates of remission, response, and discontinuation rates are shown in Table 2.

Studies examining remission and response rates for treatment-resistant patients are fewer in number. For the SSRI agents, these products were included in an open-label study that examined second-line treatment of depression in a naturalistic manner compared with venlafaxine. Several other studies were also available for citalopram and escitalopram. Fluoxetine and sertraline, and venlafaxine were.

Because these studies did not necessarily report sufficient information to adjust both remission and response rates, an assumption was made that the results were consistent for both remission and response. The estimated remission and response rates for second-line treatment of depression are shown in Table 3. Relative to first-line treatment, the remission and response rates are all considerably lower than what was observed in studies evaluating treatment-naive patients.
Model Outcomes

As mentioned earlier, the model projects that a cohort of 6,129 persons would fail initial therapy and move to second-line treatment. Because market share distribution for the various agents was unknown, it was assumed that all agents would have a 15% market share except for sertraline (20%) and paroxetine CR (5%). The distribution of patients and outcomes assuming this market share distribution are shown in Table 4. In this scenario, a total of 1,187 patients would achieve remission, with an additional 1,185 having a response. Comparatively speaking, as shown in Table 5, more patients receiving venlafaxine achieved remission (22.2%) than did generic SSRIs (18.5%), escitalopram (19.4%), paroxetine CR (17.7%), or sertraline (19.5%).

Data in Table 5 present results from the cost-effectiveness analysis, showing overall total costs and effectiveness for each agent and cost-effectiveness ratios. Therapy with the lowest total cost per patient was generic SSRIs with an estimated cost of $3,095. The next-lowest cost product was escitalopram with an estimated cost of $3,127, followed by venlafaxine XR ($3,172), sertraline ($3,178), and paroxetine CR ($3,206). In terms of cost per patient achieving remission, the agent with the most favorable ratio was venlafaxine XR ($14,275), followed by escitalopram ($16,100). Following the assumption that generic SSRIs are most commonly used for second-line treatment and maintain the lowest available cost, incremental cost-effectiveness ratios (ICERs) were calculated using generic SSRIs agents as the referent group (see Table 5). The lowest ICER was for venlafaxine ($2,073 per additional patient achieving remission), followed by escitalopram ($3,566) and sertraline ($8,613). Paroxetine CR dominated this analysis, meaning that it had higher cost and lower effectiveness than generic SSRIs.

Budget Impact Analysis

The AMCP Format for Formulary Submissions has promoted the use of both an economic model and a budget-impact analysis to accompany requests for formulary listing.41 Consistent with these guidelines, we conducted a budget-impact analysis to determine the financial impact on a health plan by encouraging the use of cost-effective antidepressants for second-line treatment of depression. Due to a lack of data about the market share for each of the respective antidepressants used in second-line treatment, as stated earlier, the model assumed a 15% market share for most therapies (citalopram, escitalopram, fluoxetine, paroxetine generic, and venlafaxine XR), with exceptions being a 20% market share for sertraline and a 5% market share for paroxetine CR. As stated previously, an estimated 6,129 persons

Table 4

<table>
<thead>
<tr>
<th>Product</th>
<th>Second-Line Market Share (%)</th>
<th>No. of Patients Treated</th>
<th>No. of Patients Achieving Remission</th>
<th>No. of Patients Achieving Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic SSRIs</td>
<td>45</td>
<td>2,758</td>
<td>511</td>
<td>520</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>15</td>
<td>919</td>
<td>179</td>
<td>181</td>
</tr>
<tr>
<td>Paroxetine CR</td>
<td>5</td>
<td>306</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>Sertraline</td>
<td>20</td>
<td>1,226</td>
<td>239</td>
<td>228</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>15</td>
<td>919</td>
<td>204</td>
<td>198</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>6,129</td>
<td>1,187</td>
<td>1,185</td>
</tr>
</tbody>
</table>

SSRIs = selective serotonin reuptake inhibitors.

Table 5

<table>
<thead>
<tr>
<th>Product</th>
<th>Total Cost ($)</th>
<th>Effectiveness Rate (%)</th>
<th>Cost per Patient Achieving Remission ($)</th>
<th>Incremental Cost-Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic SSRIs</td>
<td>3,095</td>
<td>18.5</td>
<td>16,714</td>
<td>Referent group</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>3,127</td>
<td>19.4</td>
<td>16,100</td>
<td>$3,566</td>
</tr>
<tr>
<td>Paroxetine CR</td>
<td>3,206</td>
<td>17.7</td>
<td>18,121</td>
<td>Dominated</td>
</tr>
<tr>
<td>Sertraline</td>
<td>3,178</td>
<td>19.5</td>
<td>16,132</td>
<td>$8,613</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>3,172</td>
<td>22.2</td>
<td>14,275</td>
<td>$2,073</td>
</tr>
</tbody>
</table>

SSRIs = selective serotonin reuptake inhibitors.
in a managed care plan with 500,000 enrollees would fail first-line treatment. For this cohort, approximately 1,187 would achieve remission after switching to another agent. The estimated pharmacy cost was estimated to be $1,341,246. Total costs, including medical and pharmacy for the entire cohort, was estimated to be $19,205,737. If there was a 5% increase in the market share of venlafaxine XR, the most cost-effective therapy, and a 3% decrease in generic SSRI use as well as a 2% decrease in sertraline use, the resulting pharmacy discontinuation rates would increase by $19,000, but total costs would decline by $2,000 mainly due to lower costs associated with a greater number of persons who achieved remission (1,195). Similar findings occurred if the venlafaxine XR market share was increased and other brand-name antidepressants had reductions in their market share.

Sensitivity Analysis

A series of 1-way and multiple-way sensitivity analyses were conducted to determine the impact of changing model parameters on the results. Using combined clinical data, 95% CIs were constructed for remission, response, and discontinuation rates. Using the lower bound of the 95% CI for remission and response and the upper limit for discontinuation resulted in cost per remission increasing to $16,213 for venlafaxine, $18,352 for escitalopram, $18,663 for sertraline, and $18,799 for generic SSRIs. The ICER for venlafaxine XR relative to generic SSRIs increased from $2,073 to $2,605. If the lower limits for venlafaxine XR were changed, holding constant all of the other product response and remission rates, the resulting cost per patient achieving remission increased from $14,275 to $15,176, which is still lower than the other products evaluated in the model.

Discussion

This study examines the cost-effectiveness of SSRIs and venlafaxine XR for second-line treatment of MDD. Results suggest that the lowest cost option was generic SSRIs, but the agent with the highest clinical success was venlafaxine XR. The ICER for venlafaxine relative to generic SSRIs was $2,072 per patient achieving remission. This result is consistent with another cost-effectiveness analysis conducted by Trivedi et al. that compared SSRI agents as a group with venlafaxine XR.39

The Trivedi et al. model used data from 8 double-blind clinical trials involving 2,045 patients.39 In that study, the measure of success was a DFD, defined as having a HAM-D score of 7 or less. DFDs were then converted to QADs. The results found that persons receiving venlafaxine had a 44.9% remission rate compared with 34.7% for SSRIs. Economic analysis based on an 8-week period found that the cost for venlafaxine was $585 and for SSRIs was $526. The ICER for venlafaxine versus SSRIs was $586.08 per patient achieving remission, $14.20 per DFD, and $34.55 per QAD.

Numerous cost-effectiveness analyses have compared 2 or 3 select agents, with many involving venlafaxine.28,30-34,70,71 These analyses do not consider the role of generic SSRIs, which are becoming more prominent with products going off patent. Those economic analyses that have included generic SSRIs assume first-line treatment of MDD.34,37 As more generic SSRIs enter the market, it will become increasingly important to consider these market changes when conducting cost-effectiveness analyses in MDD.

Several limitations to this study should be noted. Clinical trial results were not drawn from head-to-head studies, although every clinical trial included in the study was assessed against an active comparator to minimize selection bias. Unfortunately, the published literature contains only a few studies for treatment-resistant MDD. The majority of clinical information for treatment-resistant effectiveness is derived from large open-label studies that trade greater external validity for lower internal validity. The literature is much richer concerning treatment of initial depression due to the design of clinical studies for purposes of registration and regulatory approval. More studies of treatment-resistant depression in real-world settings are needed. In addition, lack of inclusion of all potential treatments in existing studies of treatment-resistant depression limits the present study, especially with the exclusion of duloxetine. It is important to note that in this study, it was assumed that patients who failed initial therapy were transitioned into a second pharmacologic treatment. It is logical to question this assumption, but no known data could be used to estimate this transition probability.

Another limitation of this study is that the analysis did not explicitly consider differences in side effect profiles between the various agents. The results may change if substantive differences in side effect rates result in premature discontinuation or additional consumption of health care services. Another limitation is the lack of data concerning the market share for each of the respective agents as second-line therapy. We estimated a 5% increase in venlafaxine XR use for illustrative purposes in the budget-impact analysis. Actual changes in market share will vary between health plans depending on local market conditions. Another limitation is the use of WAC pricing, which may not reflect actual costs to MCOs. Finally, the analysis does not take other treatments into account, such as counseling, which may be effective for treating depressed patients.

Conclusion

Patients with depression often fail initial therapy, resulting in higher costs to health plans and a poorer quality of life. This analysis examines the issue of second-line treatment for depression by comparing brand-name and generically available products and taking persistency into account. Using a budget-impact and cost-effectiveness model, this study found that increasing the market share of venlafaxine XR is likely to result in overall savings to a health plan because more patients achieve...
remission of their depression. This suggests that venlafaxine XR may be a cost-effective strategy with a favorable ICER for the second-line treatment of MDD.

DISCLOSURES
The author was a consultant to Wyeth Pharmaceuticals Inc. for this study. He also has served on a health economic advisory board for Wyeth related to treatment of depression. He received an honorarium for his participation in this study.

REFERENCES

